

Photo: by Helga @ PIXELIO

Biomass → Energy + Product!

Today biomass is an important resource. Therefore it should be used reasonably and should not just be composted or burnt.

Our rotary kiln thermolysis systems offer a highly effective economical conversion of supposed 'waste material' into high efficient energy and their various recyclings.

The following presentation gives an overview of individual capabilities.

Different preparation of input material in connection with DGE-rotary kilns, varying from 300 kg/h up to 2,000 kg/h material throughput, allows customised operation of our standardised plant concepts.

Additional possible finishings of generated products increase the profitability considerably.

Just choose components according to your requirements and we create a solution!

Composting is the most commonly used method for biomass-recycling. The CO_2 which is released during aerobic composting has to be seen as CO_2 off-balance.

During anaerobic decomposition (**putrescene**) methane is generated which is up to 21-times as harmful to the climate as CO_2 .

During CO_2 -neutral **combustion** a lot of fine dust may be generated. And, depending on the composition of the biomass, new pollutants are generated during combustion. (Straw \rightarrow Dioxine)

During **torrefication** parts of volatile components are driven off at low temperartures (i.e. 250-300°C). As a result you receive a product with a higher heating value at reduced volume. Depending on process control energy has to be added.

During **thermolysis** all volatile compounds are driven off and most of the organic structures are set out, to get a preferably high ratio of process gas. As a result one receives mineralized coke as a solid matter, which can be used, among other things, as a soil conditioner to reduce CO_2 .

During **gasification** all carbon containing compounds are cracked and only in an ideal case a pure gaseous mixture consisting of H_2 und CO is generated. However, having biomasses with a low ash melting point, gasification may be critical.

CO₂-Equivalent

Treatment	Conversion of carbon	CO ₂ - Equivalent	
Rotting	50% CO ₂ 50% CH ₄	6,25	
Combustion	100 % CO ₂	1,00	
Gasification	100 % CO	1,00	
Thermolysis	30 % CO ₂ 70 % C _{fix}	0,30	When using C _{fix} as Soil conditioner, colourant, feedstock,energy source

Fundamentals

Imbert Holzvergaser Taken from www.holzgibtgas.com

Preferably oxygene and steam are led over a firebed during (wood)**gasification**. As a result a gas consisting of H2 und CO is generated.

However, in most of the reaction vessels air is used. The process gas therefore contains a high ratio of nitrogen. For this reason it has a comparatively low heating value.

During **Flash Pyrolysis** the input material is often abruptly heated up to 300-500°C in a fluidized bed. The residence time is typically only seconds.

During **Rotary Kiln Thermolysis** the input material is continuously heated up to 500-750°C but in **absence of oxygen!** During this process organical material decomposes in several stages and a high-heating-value gas is generated.

The residence time in the continuous rotary kiln is typically 30 – 60 minutes.

Testing results

70,0 60,0 50,0 -calculated (10%WC) Mass [%] 40,0 -Sample A (20% / 1,9% WC) 30,0 - Sample B (19% /4,2% WC) 20,0 10,0 0,0 500 °C 600 °C 700 °C 750 800 °C Temperature [°C]

Please note: Even trees of the same genus show different values according to place of location and year !

Pyrolysis oil = causing corrosion?

Please note: The often quoted "nameless" pyrolysis oil derives from Flash-Pyrolysis tests, which take place clearly below 500°C!

DGEngineering

www.dgengineering.de

Rotary kiln-thermolysis plants

Rotary kiln-thermolysis is a proven and tested technology!

Cleaning of contaminated grounds, waste disposal, brown coal treatment, matured wood recycling, sewage sludge disposal, activated carbon regeneration, Alu-Fluff-Recycling, scrap tire disposal

Clean Coal Project - Philippines

Carbonisation with MINI-05

Input:	brown coal	25% WC
Output:	coke	10% VM

Target:

- Smokeless cooking
 Simple ignition with a pocket lighter
 Heat for 2 to 3 hours

DGEngineering www.dgengineering.de Our thermolysis technology converts biomass into (storable) energy!

Plant type MINI-05

<u>Data</u>

Completely assembled, turnkey EXW

Throughput nominal 300 kg/h

Grain size < 20 mm spreading variable

Semimobile:

- \rightarrow Removal within 2 weeks
- \rightarrow for standard trucks

Remote controllable Operation without personell possible

Outdoor erection on concrete ground respectively, strip foundation

Mobile dryer "Riela"

Tested products:

Eggshells, fermentation residue, cereals, wood chips, sewage sludge, corn, bark mulch, clay, peat, pulp, sugar-beet shred

By means of on-site drying reduction of transport weight of the recycling goods!

<u>Data</u>	
Туре	Feed-and-turn-dryer
Input	700 kg/h < 50% WC
Vaporisation	250 kg/h
Medium	different
Energy demand	approx. 400 kW Warm water/Turbine off-gas
Required space	trailer

Advantages:

- Stationary: Using of thermolysis waste heat
- Mobile: Using of waste heat from an integrated Oil-Micro-Turbine

Dryer "GGM"

Data

Туре	CDT 500
Input	700 kg/h < 50% WC
Vaporization	440 kg/h
Medium	wood chip
Energy demand	approx. 500 kW Hot water / turbine exhaust
Required space	2 x 40" Container

Advantages:

- Utilisation of the thermolysis waste-heat
- Especially for wood-chip drying

Dryer "VMPress"

Tested products:

Brown coal, domestic waste, sewage sludge (< 60%WC), food leftovers, plastic waste

<u>Data</u>	
Туре	
Input	1.000 kg/h < 60% WC
Vaporization	no
Medium	any (with structure)
Energy demand	approx.16 kW _{electrical} /t

Required space 40" Container

Advantages:

- Very little energy demand
- Organical press sludge generally very suitable for biofermenter!
- Drying down beneath 10% WC (plastics) and 20%WC (domestic waste) possible.

Organic bonded water can not be pressed out!

It is advisable to use a (partial) bio fermentation for cracking the cell structure, which besides generates sufficient bio gas ...

DGE – Flow diagram thermolysis

Hopper
 Input sluice
 Thermolysis-coke hot
 Thermolysis-coke cold
 Thermolysis raw gas
 Permanent gas
 Permanent gas, cleaned
 GPL / natural gas
 Off gas

10 Rotary kiln unit

- 20 Condensation
- 21 Cooler
- 22 Filter
- 31 Activated carbon filter32 Emergency flare33 Gasometer34 CHP
- 35 Raw oil tank 39 Thermolysis oil, raw
- 40 Desulphuring

50 Oil-CHP 51 Off-gas filter 58 Filter dust 59 Off-gas

60 Distillation

67 Super fraction68 Light oil fraction69 Heavy oil fraction

Advantages of rotary kiln thermolysis

Technical reasons

- Reactor temperature is clearly below slag melting point
- No nitrogen ballast (\rightarrow high heating value)
- Continuous mixing of the product
- Broad range of grain size
- Due to external gas utilisation the rotary kiln-reactor is "free adjustable"
- Due to process elimination of dioxines and furans

Economical reasons

- Any (dry) organic material can be used
- No problems with antibiotics (\rightarrow biogas plants)
- Disposal of problematical biomasses (e.g. horse manure, mouldy)
- Withdrawal of potential CO2 from the cycle (\rightarrow CO2-certificates)

Products instead of waste

Permanent gas

- Process heat for thermolysis process
- Prozess heat for drying process
- Heat for cooling unit, sufficient for hotels (approx. 100 beds)
- \rightarrow Turbine fuel (\rightarrow power generation)

Condensate oil (current price for raw oil 500 €/to)

- Fuel (\rightarrow power generation)
- Fuel for own devices
- Feddstock for chemical industry

<u>Coke (due to quality 150 – 2.500 €/to)</u>

- Colourant for the cement industry (150 €/to)
 Substitute for carbon black in chemical industry (powdered approx. 500 €/to)
- Substitue for coke in metallurgical industry
- Basis for activated carbon production (activated 700 €/to and more)
- Soil conditioner (Terra Preta)
- Bio barbecue coal

CO2-Certificate (current price 15 €/to CO2)

MINI-05 with biomass

input: biomass 300kg/h = 1.440 kW

Permanent gas

- I00 kW process heat for own process
- I00 kW process heat for drying processes or
- heat for cooling unit
- \sim 30 kW fuel (\rightarrow power generation)

Condensate oil (460 kW / 80 kg/h)

- Fuel (\rightarrow power generation)
- Fuel for own devices
- Chemical industry

Coke (750 kW / 90 kg/h

- Substitute for carbon black in the chemical industry
- Substitue for coke in the metallurgical industry
- Basis for activated carbon production
- Soil conditioner (\rightarrow Terra Preta)
- Bio-barbeque coal

CO2-certificate (CO2-reduction 1.800 to/a)

Equates to approx. 160 average citizens

Please note: Especially biomasses have wild variations!

DGE-plant "MINI-05"

MINI-05 throughput		300 kg/h	13.20 MJ/kg	3,960 MJ/h	1,100 kW
Permanent gas	39%	117 kg/h	11.20 MJ/kg	1,310 MJ/h	364 kW
Pyrolyseöl	39%	117 kg/h	16.00 MJ/kg	1,872 MJ/h	520 kW
Pyrolysekoks	22%	66 kg/h	11.79 MJ/kg	778 MJ/h	216 kW

The ratio oil / gas has to be checked! The values will vary due to input material!

<u></u>	
Туре	MINI-05
Input	< 300 kg/h < 10% WC
Medium	not sticky
Energy	ca. 50 kW _{el.}
Space der	mand 15 m x 25 m

Data

July 2012 © DGEngineering GmbH

DGE-plant "MAXI-09"

MAXI-09 throughput		1,000 kg/h	13.20 MJ/kg	13,200 MJ/h	3,667 kW
Permanentgas	39%	390 kg/h	11.20 MJ/kg	4,366 MJ/h	1,213 kW
Pyrolyseöl	39%	390 kg/h	16.00 MJ/kg	6,240 MJ/h	1,733 kW
Pyrolysekoks	22%	220 kg/h	11.79 MJ/kg	2,594 MJ/h	721 kW

The ratio oil / gas has to be checked! The values will vary due to input material!

<u>Data</u>	
Туре	MAXI-09
Input	1.000 kg/h < 10% WC
Medium	not sticky
Energy	ca. 300 kW _{el.}
Space demand	30 m x 50 m

DGE-plant "MASTER-12"

MASTER-12 throughput		2,000 kg/h	13.20 MJ/kg	26,400 MJ/h	7,333 kW
Permanentgas	39%	780 kg/h	11.20 MJ/kg	8,732 MJ/h	2,426 kW
Pyrolyseöl	39%	780 kg/h	16.00 MJ/kg	12,480 MJ/h	3,467 kW
Pyrolysekoks	22%	440 kg/h	11.79 MJ/kg	5,188 MJ/h	1,441 kW

The ratio oil / gas has to be checked! The values will vary due to input material!

<u>Data</u>	
Туре	MASTER-12
Input	2,000 kg/h < 10% WC
Medium	not sticky
Energy	ca. 400 kW _{el.}
Space demand	30 m x 60 m

Activation unit "MINI-05"

Based on the standard plant type MINI-05 the activation unit includes some modifications:

- High temperature kiln shell and housings
- Better insulation for higher temperatures
- Burner-cooler-system for more safe operation

MINI throughput		200.0	129.6	1,555.2
		[kg/h]	[Tons/Month]	[Tons/Year]
Active coal	66%	132.0	85.5	1,026.4
Syngas	34%	68.0	44.1	528.8

Flexibility Activation Output/Quality

450 m²/gr.

Achieves in laboratory rotary kiln...

300 m²/gr.

MINI throughput		200.0	129.6	1,555.2
		[kg/h]	[Tons/Month]	[Tons/Year]
Active coal	66%	132.0	85.5	1,026.4
Syngas	34%	68.0	44.1	528.8

< 50 m²/gr.

MINI throughput		200.0	129.6	1,555.2
		[kg/h]	[Tons/Month]	[Tons/Year]
Active coal	95%	190.0	123.1	1,477.4
Syngas	5%	10.0	6.5	77.8

Process temperature

Briquetting of carbon black

Power generation 1

In cooperation with the German distributor of Capstone DGEngineering is developing the micro-turbine application for the use of condensate oil and permanent gas.

These are the advantages of this technology: > No lubrication oil, which must be replaced

- Air supporting for long life time
 No pistons or other rubbing parts, which need maintenance
- →High control range from 10 100%
- which allows energy generationon demand
 High off gas temperature (280°C), useful for additional boilers

Power generation 2

With an ORC unit of the company LTi Adaturb, the waste heat of the process can be used to generate electricity.

The CHP bonus is granted for plants with thermal and electrical use.

So for the complete waste heat the CHP bonus can be safed.

<u>Data</u>	
Туре	TG 30 DV1
Energy	net ca. 30 kW _{el.}
Space demand	20" Container

Process control system

www.dgengineering.de

	Engineer per shift	Technician per shift	Helper per shift	shifts	total
Mobile Pre-drying	0	0	0,5	5	2.5
Stationary pre-drying	0	0	0.5	5	2.5
Thermolysis	1	0	1	5	10
Briquetting	0	1	1	1	2
Power generation	0	0	0	0	0
total	5	1	11		17

The table shows the required staff for Germany.

Possibilities for subvention (Germany 2011)

Not all biogenic resources get subventions for renewable resources

Renewable resources bonus

- Miscanthus
- Corn chaff
- Hay, silage
- Horse manure
- Pellet wastage
- Faulty or bug infested
- wood,forest residues
- Bark
- Cereal wastage

Negative list

- Cereal
- Domestic animal manure
- Saw dust & wood shavings
- Mash
- Vegetable leftovers
- Rejected vegetables
- Rejected potatoes

Not all thermal uses get the bonus according to EEG (Renewable Energy Sources Act)

Positive list

- Heating of buildings
- Feed-in
- Utilisatin as process heat
- Heating of barns
- Heating of Unterglasanlagen

Negative list

- Heating of buildings
- Charging of heat reservoirs
- Utilisation of off-heat ORC

Capabilities of the MINI-05

The semimobile plant MINI-05 is designed for cases where integrated heating concepts are required as well as where biomasses incur, either free of charge or which have to be recycled expensively.

Our plant can possibly be used in the following:

- Wood chip drying (ca. 5.000 t/a W50)
- Horse property (ca. 300 400 horses)
- I eisure

- Food industry (ca. 500kg/h steam)
 Villages (ca. 80 100 residential units)
 Greenhouses (warm air quantity ca. 800 kW)
- Energy hosts (farm size 100 150 ha)

T-Kit: Steam / Hot water

Off-heat utilisation for steam or hot water generation. Food production, laundry etc.

T-Kit: Cooling

Off-heat utilisation for air conditioning. With MINI: hotels with 100 beds or cold store up to -4°C

T-Kit: Cool-Churns

Regenerationsequipment Regeneration equipment

Heizmanschette 2-3 CoolChums / Batch

Heating Collar 2-3 CoolChums / Batch

Gasbetriebener oder elektrischer Ofen 15-32 CoolChums / Batch

Gas driven or electrical oven 15-32 CoolChums / Batch

Regenerationsequipment Regeneration equipment

Kontinuierlicher gas betriebener Ofen 60-120 CoolChums / h

Continuous gas driven oven 60-120 CoolChums / h

Cool-System KEG GmbH Flössaustr. 7 D - 90763 Fürth / Bayem

Tel.: +49 911 25 30 160 Fax: +49 911 25 30 159

http://www.coolsystem.de http://www.coolchum.com Email: info@coolsystem.de

CoolChurn®

- die erste selbstkühlende Kanne / Container
- the first selfchilling churn / container

Inhalt: 7,5 - 20,01 Content: 7,5 - 20,01

- Kühlkapazität: t max. 25°K Cooling capacity: t max. 25°K
- Dauer der Kühlung: bis zu 24 h Duration of cooling: up to 24h
- Stahlqualität: 1.4301 Steel quality: AISI 304

N

Off-heat utilisation for regeneration of selfchilling barrels & churns

C is a registered brandname of COLSYST

More applications...

Mixing of the products is generally possible!

Thank you for your attention!

MINI-05 Anlagenansicht (system view 2009)

MINI-05-Duo (system view 2010)

MINI-05 (system view 2011)